Linear Algebra Review

Tuesday, October 10, 2023 1:33 PM

Transpose: $(X^T)_{ii} = X_{ji}$ Dot Product: $x \cdot y = x_1y_1 + \dots + x_dy_d$ $\mathbf{x} \cdot \mathbf{y} = \mathbf{0} \iff \mathbf{x} \perp \mathbf{y}$ $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}|^2$ $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ Matrix-vector: $A_{r \times d} x_{d \times 1} = \begin{pmatrix} A_1 \cdot x \\ \vdots \\ A_r \cdot x \end{pmatrix}$ Identity: $I_d x = x$ Matrix-matrix: $A_{r \times k} B_{k \times p} = \begin{pmatrix} \square & \cdots & \square \\ \vdots & A_i \cdot B_j^T & \vdots \\ \square & \cdots & \square \end{pmatrix}$ Not commutative: $AB \neq BA$ Associative: ABCD = (AB)(CD)Symmetry: $A_{ij} = A_{ji}$ Diagonal: $i \neq y \rightarrow A_{ii} = 0$ Linear Functions: f(x) = AxQuadratic Function: $f(x) = x^T A x$ Determinant: |A| Inverse: $AA^{-1} = A^{-1}A = I$ Non-invertible matrix is called singular $A^{-1} \leftrightarrow |A| \neq 0$

Nearest Neighbor, K Nearest Neighbor

Thursday, September 28, 2023 12:31 PM

Given training data $x_1 \, ... \, x_n \, \text{and} \, \text{labels} \, \, y_1 \, ... \, y_n \, \text{,}$

We can classify new image x by finding its nearest neighbor x_i and returning y_i

Distance function: stretch each image into 1D int vector array, we can use Euclidean distance $||x - v|| = \sqrt[\Box]{\sum(x_i + v_i)^2}$

Problem: distance function is slow

Better distance functions: $\frac{\ell_2 \text{ tangent distance shape context}}{3.09 1.10 0.63}$

K Nearest Neighbor:

Classify point by using the labels of its \boldsymbol{k} nearest neighbors

Speeding up NN Search for large N:

Locality sensitive hashing Ball trees K-d trees

Cross Validation

Thursday, September 28, 2023 1:26 PM

How to create a test set from training set.

- 1. Create a Hold-out set
 - Let S be the training set
 - Choose $V \subset S$ as validation set
 - Determine fraction of V which is misclassified
 - Not great at testing error rate on real data
- 2. Leave-one-out cross-validation
 - For each point $x \in S, \text{find the k-nearest neighbors in }S$ without x
 - What fraction are misclassified?
- 3. m-fold cross validation
 - Divide training set into m pieces $S_1 \dots S_m$
 - For each piece S_i : Classify each point in S_i using k-NN with training set $S-S_i$ Let ε_i be the fraction of S_i that is incorrectly classified
 - Average over all ε

Distance Functions, Metric Spaces

Tuesday, October 3, 2023 12:50 PM

Distance Functions

$$\begin{split} \ell_{p}(x,y) &= \left(\sum_{i}^{d} \left|x_{i} - y_{i}\right|^{p}\right)^{\frac{1}{p}} \\ \ell_{\infty}(x,y) &= \max(\left|x_{i} - y_{i}\right|) \end{split}$$
 For the vector $(1 \dots 1) \in \mathbb{R}^{d}$:

 $\begin{aligned} \ell_1 &= \mathbf{d} \\ \ell_2 &= \sqrt{\mathbf{d}} \\ \ell_\infty &= 1 \end{aligned}$

All points in R^2 with distance 1:

Metric Spaces

Let X be the data space A distance function $d: X * X \rightarrow R$ is a metric if: $\circ d(x, y) \ge 0$ $\circ d(x, y) = 0 \leftrightarrow x = y$ $\circ d(x, y) = d(y, x)$ $\circ d(x, z) \le d(x, y) + d(y, z)$

Prediction Problems

Tuesday, October 3, 2023 1:35 PM

Input space: X Output space: Y

Discrete output space: classification - Each possible output is uniquely different Continuous output space: regression - Possible outputs are ordered and results can be close Probability output space: Y = [0,1]

Multiclass Classification:

- Y has many discrete values

Structured Classification:

- Y is a discrete structured value (eg. Tree)

Statistics

Thursday, October 5, 2023 12:35 PM

Mean:

$$E(X) = \sum_{x} x * \Pr(x)$$
$$E(X) = \int x * p(x) dx$$

Properties: E(aX + b) = a * E(X) + b

Variance:

 $V(X) = E((X - \mu)^2) = E(X^2) - E(X)^2$ Properties: $V(aX) = a^2 * V(X)$ V(X + b) = V(X)

Standard Deviation: $\sigma = \sqrt{V(X)}$

Independence: X, Y are independent if P(X, Y) = P(X) * P(Y)Dependence:

Cov(X,Y) = E(X * Y) - E(X) * E(Y) $Cor(X,Y) = \frac{Cov(X,Y)}{\sigma(X) * \sigma(Y)}$

Classification

Example:

Thursday, October 5, 2023 1:34 PM

Idea: generate Gaussian curves fitted to each class, then calculate the probability of each class **Generative models**

For each class j, we have:

• the probability of that class, $\pi_j = \Pr(y = j)$

• the distribution of data in that class, $P_i(x)$

Overall joint distribution: $Pr(x, y) = Pr(y)Pr(x|y) = \pi_y P_y(x)$.

To classify a new x: pick the label y with largest Pr(x, y)

Adding more than 1 feature: Multivariate Gaussian $(E(\mathbf{V}))$

N(
$$\mu, \Sigma$$
) where $\mu_1 = \begin{pmatrix} E(X_1) \\ \vdots \\ E(X_d) \end{pmatrix}$ and $\Sigma_{ij} = \operatorname{cov}(X_i, X_j)$
p(x) $= \frac{1}{(2\pi)^2 * |\Sigma|^2} * \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$ where $|\Sigma| = \det(\Sigma)$

Diagonal: X_i are independent, only the diagonals are non zero Spherical: X_i are independent and have the same variance, only diagonals are non zero and are the same value

Typically, compute the log of probabilities because probabilities become tiny

Decision boundaries:

- Linear: Covariances are equal
- Spherical: Both distributions are spherical and unequal variances
- Quadratic: Everything else

Logistic Regression, Bag of Words

Thursday, October 26, 2023 12:48 PM

Idea: use a linear function as a decision boundary

Logistic regression: for data $x \in \mathbb{R}^d$ and binary labels $y \in \{-1, 1\}$

```
P(y|x) = \frac{1}{1 + e^{-y(w \cdot x + b)}}
    Or we can define w = (w, b), x = (x, 1)
   P(y|x) = \frac{1}{1 + e^{-ywx}}
    Training: maximize the likelihood \prod P(y|x)
    Take the log to get the loss function:
    L(w,b) = \ln \sum (1 + e^{-y_i w x_i})
    Gradient descent:
    Set w_0 = 0
    For t = 0, 1, 2, ... until convergence
    w_{t+1} = w_t + \eta_t \sum y_i x_i P(-y|x) where \eta_t is the step size
Bag of Words:
    Fix V = some vocabulary
    Treat each sentence (or document) as a vector of length |V|:
        x_i is the number of times the ith word appears in the sentence
Margin and test error:
    Margin(x) = |P(y = 1|x) - \frac{1}{2}|
```

Regression

Tuesday, October 17, 2023 1:36 PM

Ordinary least squares regression: Given dataset x,y f(x) = wx + bMinimize squared error: $L(w,b) = \sum (y_i - (wx + b))^2$ Solving: assimilate b into A define w = (b,w), x = (1,x) therefore f(x) = wxDefine $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $L(w) = \sum (y_i - wx)^2 = |y - Xw|^2 \text{ which is minimized at } w = (X^TX)^{-1}(X^Ty)$ Ridge regression: penalize complex models $L_R(w,b) = L(w,b) + \lambda \ell_2(w)^2$ $w = (X^TX + \lambda I)^{-1}(X^Ty)$ $\lambda \approx 0$ when lot of data

 $\lambda \rightarrow \infty$ when no data

$$b = \mu_y - w\mu_x$$

Lasso regression: tends to produce sparse w $L_R(w,b) = L(w,b) + \lambda \ell_1(w)$

Optimization, Positive Semidefinite

Tuesday, October 31, 2023 12:32 PM

⊙ Move w to w'

```
Gradient descent: we can use the derivative to find w'

Then we can say the procedure is w_{t+1} = w_t - \eta_t \nabla L(w_t)

Step sizes:

Too small: not much progress

Too large: overshoot the mark

Picking step size: pick \eta_t using a line search

\eta_t = \min L(w_t - \alpha \nabla L(w_t))
```

Multivariate differentiation: Given $w \in \mathbb{R}^k$

$$\nabla L(w) = \begin{bmatrix} \frac{dL}{dw_1} \\ \vdots \\ \frac{dL}{dw_k} \end{bmatrix}$$

Stochastic Gradient Descent: each update may involve the entire dataset, which is inconvenient Cycle through the dataset and get each point (x, y): $\nabla L(w) = -y * \Pr_{w_t}(-y|x)$

Minibatch Stochastic: each update involves a small batch of points Cycle through the next batch of points ${\it B}$

```
Decomposable Loss Functions L(w) = \sum \ell(w, x_i, y_i))
```

Convexity: Given $f(x): \mathbb{R}^d \to \mathbb{R}$ Convex iff = f'' is always positive semidefinite

Positive Semidefinite: M is square M is symmetric $M = UU^T$ M has only positive eigenvalues

Alternatively, $x^TMx \geq 0$ for any x

Perceptron

Tuesday, November 7, 2023 12:35 PM

Linear classifier: $\hat{y} = w \cdot x + b$ loss is $L(w,b) = -y(w \cdot x + b)$ Penalize wrong guesses which are very far from the decision boundary Learning Algorithm: use stochastic gradient descent - Initialize w=0, b=0 - Cycling through data (x,y) o If $y(w \cdot x + b) \le 0$ - w = w + yx- b = b + y

Support Vector Machines

Tuesday, November 7, 2023 1:04 PM

Idea: maximize the margin of the decision boundary on the data

Note that = $y(w \cdot x + b) > 0$ is equivaluent to $y(w \cdot x + b) \ge 1$ if we multiply w and b by some constant

Hard-margin SVM: $\min(|w|^2)$ such that $y(w \cdot x + b) \ge 1$ The solution $w = \sum \alpha_i y^{(i)} x^{(i)}$ where $\alpha_i = 1$ only if function is on the margin

Soft-margin SVM: What if the data is not separable? Allow each data point some slack $\min\bigl(|w|^2\bigr) + C \Sigma \xi_i \text{ such that } y(w \cdot x + b) \geq 1 - \xi_i \text{ and } \xi \geq 0$ C manages the tradeoff between margin and slack

Duality in Linear Classification

Thursday, November 9, 2023 1:07 PM

Given training points x, y in the Perceptron algorithm:

A linear model solution has the form $w = \sum \alpha_i y^{(i)} x^{(i)}$

Where α_i is # of times update occurred on point I

Perceptron algorithm: primal form • Initialize w = 0 and b = 0• While some training point $(x^{(i)}, y^{(i)})$ is misclassified: • $w = w + y^{(i)}x^{(i)}$ • $b = b + y^{(i)}$ Perceptron algorithm: dual form • Initialize $\alpha = 0$ and b = 0• While some training point $(x^{(i)}, y^{(i)})$ is misclassified: • $\alpha_i = \alpha_i + 1$

Where
$$w = \sum \alpha_i y^{(i)} x^{(i)}$$
, $b = \sum \alpha_i y^{(i)}$

Hard-margin SVM:

$$(\text{PRIMAL}) \min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R} \\ w \in \mathbb{R}^d, b \in \mathbb{R}}} \|w\|^2$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

$$(\text{DUAL}) \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)}(x^{(i)} \cdot x^{(j)})$$
s.t.: $\sum_{i=1}^n \alpha_i y^{(i)} = 0$

$$\alpha \ge 0$$

Soft-margin SVM:

$$\begin{array}{|c|c|} & (\text{PRIMAL}) & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} & \|w\|^2 + C \sum_{i=1}^n \xi_i \\ \text{s.t.:} & y^{(i)}(w \cdot x^{(i)} + b) \geq 1 - \xi_i & \text{for all } i = 1, 2, \dots, n \\ & \xi \geq 0 \end{array} \\ \hline & (\text{DUAL}) & \max_{\alpha \in \mathbb{R}^n} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)}(x^{(i)} \cdot x^{(j)}) \\ & \text{s.t.:} & \sum_{i=1}^n \alpha_i y^{(i)} = 0 \\ & 0 \leq \alpha_i \leq C \end{array}$$

Multiclass Classification, SoftMax

Tuesday, November 14, 2023 12:30 PM

Logistic: train a linear classifier for each class, predict the highest class value

Class 1: $w_1x + b_1$ Class k: $w_kx + b_k$ SoftMax: $P(y = j | x) = \frac{e^{w_j \cdot x + b_j}}{e^{w_1 \cdot x + b_1 + \dots + e^{w_k \cdot x + b_k}}}$

$$L(w,b) = -\sum_{i=1}^{n} \ln(P(y = y^{(i)} | x^{(i)}))$$

Perceptron: train a perceptron for each class, predict the highest class value

Class 1: $w_1 \cdot x + b_1$ Class k: $w_k \cdot x + b_k$

Training:

- Initialize $w_1 = \cdots = w_k = 0$ and $b_1 = \cdots = b_k = 0$
- Repeat while some training point (x, y) is misclassified:

for correct label y: $w_y = w_y + x$ $b_y = b_y + 1$ for predicted label \widehat{y} : $w_{\widehat{y}} = w_{\widehat{y}} - x$ $b_{\widehat{y}} = b_{\widehat{y}} - 1$

Maximum of (K choose 2) boundary pieces (depending on dimensionality)

Multiclass SVM:

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label $\arg \max_j (w_j \cdot x + b_j)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{\substack{w_1, \dots, w_k \in \mathbb{R}^d, b_1, \dots, b_k \in \mathbb{R}, \xi \in \mathbb{R}^n \\ w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i } \sum_{j=1}^k \|w_j\|^2 + C \sum_{i=1}^n \xi_i$$

$$w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i$$
 for all i , all $y \ne y^{(i)}$

$$\xi \ge 0$$

Kernel Machines, Basis Exaphsion

Tuesday, November 14, 2023 1:20 PM

Basis Expansion:

Idea: embed data in higher-dimension feature space, then use linear classifier

 $\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d)$

Dimensionality is 2d + dC2

```
Kernel Perceptron:
```

Primal Form: w = 0 and b = 0while some $y(w \cdot \Phi(x) + b) \le 0$: • $w = w + y \Phi(x)$ • b = b + y

Computing and training: the data has high dimensionality

- \circ Represent w in dual form $lpha=(a_1,...,a_n)$
- Compute $w * \phi(x) = \sum \alpha_i y^{(i)} \left(\phi(x^{(i)}) \cdot \phi(x) \right) + b$
- $\circ \ \phi(x) \cdot \phi(z) = (1 + x \cdot z)^2$

Dual form: $w = \sum_{i} \alpha_{j} y^{(j)} \Phi(x^{(j)})$, where $\alpha \in \mathbb{R}^{n}$

- α = 0 and b = 0
- while some *i* has y⁽ⁱ⁾ (Σ_j α_jy^(j)Φ(x^(j)) · Φ(x⁽ⁱ⁾) + b) ≤ 0:
 α_i = α_i + 1
 - $b = b + y^{(i)}$

To classify a new point x: sign $\left(\sum_{j} \alpha_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x) + b\right)$.

Kernel SVM:

- **1** Basis expansion. Mapping $x \mapsto \Phi(x)$.
- **2** Learning. Solve the dual problem:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\Phi(x^{(i)}) \cdot \Phi(x^{(j)}))$$

s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

This yields $w = \sum_{i} \alpha_{i} y^{(i)} \Phi(x^{(i)})$. Offset *b* also follows. **Classification.** Given a new point *x*, classify as

sign
$$\left(\sum_{i} \alpha_{i} y^{(i)} (\Phi(x^{(i)}) \cdot \Phi(x)) + b\right)$$
.

Kernel Functions: Let $\phi(x)$ consist of terms of order $\leq p$ Then $\phi(x) \cdot \phi(z) = (1 + x \cdot z)^p$

```
In general we can define k(x,z) = \phi(x) \cdot \phi(z)

\circ Similarity between x and z

\circ Pick any similarity function -> new decision boundary
```

However $K_{i,j} = k\left(x^{(i)}, x^{(j)}\right)$ must be PSD

RBF Kernel:

 $k(x,z)=e^{-\frac{|x-z|^2}{s^2}}$ where s is an ajdustable scale parameter

As s increases, k(x,z) approaches 1, and decision will produce the same output everywhere As s decreases, k(x,z) behaves like Nearest Neighbor As we get more data, we should decrease s

Decision Trees

Friday, November 24, 2023 6:56 PM

Create a tree where each node separates the data by some decision.

- Accommodates any type of data (real, Boolean, categorical)
- Can accommodate any number of classes
- Can fit any data set
- Statistically consistent

Greedy algorithm: build tree top-down.

- Start with a single node containing all data points
- Repeat:
 - Look at all current leaves and all possible splits
 - Choose the split that most decreases the uncertainty in prediction

Uncertainty:

	<i>k</i> = 2	General <i>k</i>
Misclassification rate	$\min\{p,1-p\}$	$1 - \max_i p_i = 1 - \ p\ _\infty$
Gini index	2p(1 - p)	$\sum_{i eq j} {oldsymbol{ ho}}_i {oldsymbol{ ho}}_j = 1 - \ oldsymbol{ ho}\ ^2$
Entropy	$p\log\frac{1}{p} + (1-p)\log\frac{1}{1-p}$	$\sum_i p_i \log \frac{1}{p_i}$

Where p_k represent the probability that a point contained by the node is classified label k

Choosing a Split:

Benefit of a split

Let u(S) be the uncertainty score for a set of labeled points S.

Consider a particular split:

Benefit of split = reduction in uncertainty:

$$\left(u(S) - \underbrace{(p_L u(S_L) + p_R u(S_R))}_{\text{expected uncertainty after split}}\right) \times |S|$$

Pick the split where $\left[u(S) - \left(p_L u(S_L) + p_R u(S_R)\right)\right] \times |S|$ is maximized

Number of splits: Given d features and n datapoints, there are (n-1)*d possible splits

Overfitting: Given enough nodes we can perfectly fit the data

- Train the tree to perfectly fit, then use pruning to correct for overfitting

- Pruning: use separate validation set, choose pruning that works best

Ensemble Methods, Random Forest

Friday, November 24, 2023 7:45 PM

Idea: want to combine different models

- No one classifier will be the final product: keep components simple
- How to train each component: on full training set? Or just on the errors?
- Combined model may be enormous

AdaBoost: Combine weak learners to boost overall performance

Weak learner: a model which is somewhat better than random guessing

Data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, labels $y^{(i)} \in \{-1, +1\}$.

- 1 Initialize $D_1(i) = 1/n$ for all $i = 1, 2, \ldots, n$
- **2** For t = 1, 2, ..., T:
 - Give D_t to weak learner, get back some $h_t: \mathcal{X} \to [-1, 1]$
 - Compute h_t's margin of correctness:

$$r_t = \sum_{i=1}^n D_t(i) y^{(i)} h_t(x^{(i)}) \in [-1, 1]$$
$$\alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$$

• Update weights: $D_{t+1}(i) \propto D_t(i) \exp\left(-\alpha_t y^{(i)} h_t(x^{(i)})\right)$

3 Final classifier: $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Suppose that on each round t, the weak learner returns a rule h_t whose error on the time-t weighted data distribution is $\leq 1/2 - \gamma$.

Then, after T rounds, the training error of the combined rule

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

is at most $e^{-\gamma^2 T/2}$.

Random Forest:

Given a data set S of n labeled points:

- For 1 to T:
 - Sample n' points randomly with replacement from S
 - Fit a decision tree h_t to the points

 $\hfill\square$ At each node restrict to one of k features chosen at random Final predictor: majority vote of $h_1 \dots h_T$

Neural Nets

Thursday, November 30, 2023 1:03 PM

Neural Nets:

Input layer -> hidden layers -> output layer

For some layer h with previous layer z h = t(w * z + b)

Where t is a non-linear activation function

• Threshold function or Heaviside step function

$$\sigma(z) = \left\{ egin{array}{cc} 1 & ext{if } z \geq 0 \\ 0 & ext{otherwise} \end{array}
ight.$$

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

• Hyperbolic tangent

 $\sigma(z) = tanh(z)$

• ReLU (rectified linear unit)

$$\sigma(z) = \max(0, z)$$

Classification with k labels: want k probabilities summing to 1.

- y_1, \ldots, y_k are linear functions of the parent nodes z_i .
- · Get probabilities using softmax:

$$\Pr(\mathsf{label} \ j) = \frac{e^{y_j}}{e^{y_1} + \dots + e^{y_k}}.$$

A neural net with one hidden layer approximates any function arbitrarily well - But use more layers to avoid an enormous layer

Optimization: use gradient descent

- For each parameter w, get the derivative and use gradient descent

$$L(W) = -\sum_{i=1}^{\infty} \ln(\Pr_{W}(y^{(i)}|x^{(i)}))$$

- Solving for all weights as the same time: backpropagation Chain rule: if x -> y -> z then $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$ Therefore:
 - On a single forward pass, compute all the h_i.
 - On a single backward pass, compute dL/dh_l,..., dL/dh₁

$$x = h_0 \quad h_1 \quad h_2 \quad h_3 \quad \cdots \quad h_\ell$$

From $h_{i+1} = \sigma(w_{i+1}h_i + b_{i+1})$, we have

$$\frac{dL}{dh_{i}} = \frac{dL}{dh_{i+1}} \frac{dh_{i+1}}{dh_{i}} = \frac{dL}{dh_{i+1}} \sigma'(w_{i+1}h_{i} + b_{i+1}) w_{i+1}$$

The derivative of ith layer depends on the derivative of the forward layer, derivative of the activation function, and weights of the forward layer.

Issues in training:

- Overfitting: stop early to avoid overfitting, use validation set
- Dropout: for each batch delete each hidden unit with probability 1/2 independently
- Batch normalization: normalize each layer so that each node's values are normalized so that mean=0, var=1

- Variants of SGD:

Suppose we have parameters θ and loss $\ell(x, y; \theta)$. Usual SGD update:

$$\theta^{(t+1)} = \theta^{(t)} - \eta_t g^{(t)}$$

where $g^{(t)} = \nabla \ell(x_t, y_t; \theta^{(t)})$ is the gradient at time t.

• Momentum: Accumulate gradients. For $g^{(t)}$ as above, and $v^{(0)} = 0$,

$$v^{(t)} = \mu v^{(t-1)} + \eta_t g^{(t)}$$

 $\theta^{(t+1)} = \theta^{(t)} - v^{(t)}$

• AdaGrad: Different learning rate for each parameter, automatically tuned.

$$heta_j^{(t+1)} \;=\; heta_j^{(t)} - rac{\eta}{\sqrt{\sum_{t' < t} (m{g}_j^{(t')})^2 + \epsilon}} \,m{g}_j^{(t)}$$

Many others: Adam, RMSProp, etc.

Generalization

Wednesday, December 6, 2023 10:39 PM

Idea: we want a model that does well on the underlying distribution of data - Hope that the training set is representative of the data

Statistical Learning Framework:

- A learning task is defined by:
 - Instance space ${\mathcal X}$ and label space ${\mathcal Y}$
 - Distribution P on $\mathcal{X} \times \mathcal{Y}$
- All data (x, y) come from P.

A classifier is a function $h : \mathcal{X} \to \mathcal{Y}$. Its true error rate is

$$\operatorname{err}(h) = \operatorname{Pr}_{(x,y)\sim P}(h(x) \neq y).$$

For a training set $(x_1, y_1), \ldots, (x_n, y_n)$, the **training error** of h is

$$\operatorname{err}_n(h) = \frac{|\{i : h(x_i) \neq y_i\}|}{n}.$$

If the training set comes from *P*, and if *n* is large, then $err_n(h) \approx err(h)$.

How many training points?

- More complex models require more data, simpler models require less data

Distribution shifts

 \circ Relative frequency of labels changes but distribution for each label remains unchanged

Examples:

• As time goes on, prevalence of different diseases changes